119 research outputs found

    Comparing optimal convergence rate of stochastic mesh and least squares method for Bermudan option pricing

    Get PDF
    We analyze the stochastic mesh method (SMM) as well as the least squares method (LSM) commonly used for pricing Bermudan options using the standard two phase methodology. For both the methods, we determine the decay rate of mean square error of the estimator as a function of the computational budget allocated to the two phases and ascertain the order of the optimal allocation in these phases. We conclude that with increasing computational budget, while SMM estimator converges at a slower rate compared to LSM estimator, it converges to the true option value whereas LSM estimator, with fixed number of basis functions, usually converges to a biased value

    Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

    Full text link
    Multiclass open queueing networks find wide applications in communication, computer and fabrication networks. Often one is interested in steady-state performance measures associated with these networks. Conceptually, under mild conditions, a regenerative structure exists in multiclass networks, making them amenable to regenerative simulation for estimating the steady-state performance measures. However, typically, identification of a regenerative structure in these networks is difficult. A well known exception is when all the interarrival times are exponentially distributed, where the instants corresponding to customer arrivals to an empty network constitute a regenerative structure. In this paper, we consider networks where the interarrival times are generally distributed but have exponential or heavier tails. We show that these distributions can be decomposed into a mixture of sums of independent random variables such that at least one of the components is exponentially distributed. This allows an easily implementable embedded regenerative structure in the Markov process. We show that under mild conditions on the network primitives, the regenerative mean and standard deviation estimators are consistent and satisfy a joint central limit theorem useful for constructing asymptotically valid confidence intervals. We also show that amongst all such interarrival time decompositions, the one with the largest mean exponential component minimizes the asymptotic variance of the standard deviation estimator.Comment: A preliminary version of this paper will appear in Proceedings of Winter Simulation Conference, Washington, DC, 201

    Efficient simulation of large deviation events for sums of random vectors using saddle-point representations

    Get PDF
    We consider the problem of efficient simulation estimation of the density function at the tails, and the probability of large deviations for a sum of independent, identically distributed (i.i.d.), light-tailed and nonlattice random vectors. The latter problem besides being of independent interest, also forms a building block for more complex rare event problems that arise, for instance, in queuing and financial credit risk modeling. It has been extensively studied in the literature where state-independent, exponential-twisting-based importance sampling has been shown to be asymptotically efficient and a more nuanced state-dependent exponential twisting has been shown to have a stronger bounded relative error property. We exploit the saddle-point-based representations that exist for these rare quantities, which rely on inverting the characteristic functions of the underlying random vectors. These representations reduce the rare event estimation problem to evaluating certain integrals, which may via importance sampling be represented as expectations. Furthermore, it is easy to identify and approximate the zero-variance importance sampling distribution to estimate these integrals. We identify such importance sampling measures and show that they possess the asymptotically vanishing relative error property that is stronger than the bounded relative error property. To illustrate the broader applicability of the proposed methodology, we extend it to develop an asymptotically vanishing relative error estimator for the practically important expected overshoot of sums of i.i.d. random variables

    American options under stochastic volatility: control variates, maturity randomization & multiscale asymptotics

    Get PDF
    American options are actively traded worldwide on exchanges, thus making their accurate and efficient pricing an important problem. As most financial markets exhibit randomly varying volatility, in this paper we introduce an approximation of American option price under stochastic volatility models. We achieve this by using the maturity randomization method known as Canadization. The volatility process is characterized by fast and slow scale fluctuating factors. In particular, we study the case of an American put with a single underlying asset and use perturbative expansion techniques to approximate its price as well as the optimal exercise boundary up to the first order. We then use the approximate optimal exercise boundary formula to price American put via Monte Carlo. We also develop efficient control variates for our simulation method using martingales resulting from the approximate price formula. A numerical study is conducted to demonstrate that the proposed method performs better than the least squares regression method popular in the financial industry, in typical settings where values of the scaling parameters are small. Further, it is empirically observed that in the regimes where scaling parameter value is equal to unity, fast and slow scale approximations are equally accurate

    Efficient simulation of density and probability of large deviations of sum of random vectors using saddle point representations

    Get PDF
    We consider the problem of efficient simulation estimation of the density function at the tails, and the probability of large deviations for a sum of independent, identically distributed, light-tailed and non-lattice random vectors. The latter problem besides being of independent interest, also forms a building block for more complex rare event problems that arise, for instance, in queueing and financial credit risk modelling. It has been extensively studied in literature where state independent exponential twisting based importance sampling has been shown to be asymptotically efficient and a more nuanced state dependent exponential twisting has been shown to have a stronger bounded relative error property. We exploit the saddle-point based representations that exist for these rare quantities, which rely on inverting the characteristic functions of the underlying random vectors. These representations reduce the rare event estimation problem to evaluating certain integrals, which may via importance sampling be represented as expectations. Further, it is easy to identify and approximate the zero-variance importance sampling distribution to estimate these integrals. We identify such importance sampling measures and show that they possess the asymptotically vanishing relative error property that is stronger than the bounded relative error property. To illustrate the broader applicability of the proposed methodology, we extend it to similarly efficiently estimate the practically important expected overshoot of sums of iid random variables
    • …
    corecore